3.7.46 \(\int \frac {(d f+e f x)^4}{(a+b (d+e x)^2+c (d+e x)^4)^2} \, dx\) [646]

3.7.46.1 Optimal result
3.7.46.2 Mathematica [A] (verified)
3.7.46.3 Rubi [A] (verified)
3.7.46.4 Maple [C] (verified)
3.7.46.5 Fricas [B] (verification not implemented)
3.7.46.6 Sympy [B] (verification not implemented)
3.7.46.7 Maxima [F]
3.7.46.8 Giac [B] (verification not implemented)
3.7.46.9 Mupad [B] (verification not implemented)

3.7.46.1 Optimal result

Integrand size = 33, antiderivative size = 279 \[ \int \frac {(d f+e f x)^4}{\left (a+b (d+e x)^2+c (d+e x)^4\right )^2} \, dx=\frac {f^4 (d+e x) \left (2 a+b (d+e x)^2\right )}{2 \left (b^2-4 a c\right ) e \left (a+b (d+e x)^2+c (d+e x)^4\right )}+\frac {\left (b-\frac {b^2+4 a c}{\sqrt {b^2-4 a c}}\right ) f^4 \arctan \left (\frac {\sqrt {2} \sqrt {c} (d+e x)}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} \sqrt {c} \left (b^2-4 a c\right ) \sqrt {b-\sqrt {b^2-4 a c}} e}+\frac {\left (b^2+4 a c+b \sqrt {b^2-4 a c}\right ) f^4 \arctan \left (\frac {\sqrt {2} \sqrt {c} (d+e x)}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} \sqrt {c} \left (b^2-4 a c\right )^{3/2} \sqrt {b+\sqrt {b^2-4 a c}} e} \]

output
1/2*f^4*(e*x+d)*(2*a+b*(e*x+d)^2)/(-4*a*c+b^2)/e/(a+b*(e*x+d)^2+c*(e*x+d)^ 
4)+1/4*f^4*arctan((e*x+d)*2^(1/2)*c^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2))*(b 
+(-4*a*c-b^2)/(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)/e*2^(1/2)/c^(1/2)/(b-(-4*a* 
c+b^2)^(1/2))^(1/2)+1/4*f^4*arctan((e*x+d)*2^(1/2)*c^(1/2)/(b+(-4*a*c+b^2) 
^(1/2))^(1/2))*(b^2+4*a*c+b*(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(3/2)/e*2^(1/ 
2)/c^(1/2)/(b+(-4*a*c+b^2)^(1/2))^(1/2)
 
3.7.46.2 Mathematica [A] (verified)

Time = 0.28 (sec) , antiderivative size = 266, normalized size of antiderivative = 0.95 \[ \int \frac {(d f+e f x)^4}{\left (a+b (d+e x)^2+c (d+e x)^4\right )^2} \, dx=\frac {f^4 \left (-\frac {2 \left (-2 a (d+e x)-b (d+e x)^3\right )}{\left (b^2-4 a c\right ) \left (a+b (d+e x)^2+c (d+e x)^4\right )}+\frac {\sqrt {2} \left (-b^2-4 a c+b \sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} (d+e x)}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {c} \left (b^2-4 a c\right )^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\sqrt {2} \left (b^2+4 a c+b \sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} (d+e x)}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {c} \left (b^2-4 a c\right )^{3/2} \sqrt {b+\sqrt {b^2-4 a c}}}\right )}{4 e} \]

input
Integrate[(d*f + e*f*x)^4/(a + b*(d + e*x)^2 + c*(d + e*x)^4)^2,x]
 
output
(f^4*((-2*(-2*a*(d + e*x) - b*(d + e*x)^3))/((b^2 - 4*a*c)*(a + b*(d + e*x 
)^2 + c*(d + e*x)^4)) + (Sqrt[2]*(-b^2 - 4*a*c + b*Sqrt[b^2 - 4*a*c])*ArcT 
an[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[c]*(b^2 
 - 4*a*c)^(3/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + (Sqrt[2]*(b^2 + 4*a*c + b*S 
qrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b + Sqrt[b^2 - 4 
*a*c]]])/(Sqrt[c]*(b^2 - 4*a*c)^(3/2)*Sqrt[b + Sqrt[b^2 - 4*a*c]])))/(4*e)
 
3.7.46.3 Rubi [A] (verified)

Time = 0.40 (sec) , antiderivative size = 258, normalized size of antiderivative = 0.92, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.121, Rules used = {1462, 1440, 1480, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(d f+e f x)^4}{\left (a+b (d+e x)^2+c (d+e x)^4\right )^2} \, dx\)

\(\Big \downarrow \) 1462

\(\displaystyle \frac {f^4 \int \frac {(d+e x)^4}{\left (c (d+e x)^4+b (d+e x)^2+a\right )^2}d(d+e x)}{e}\)

\(\Big \downarrow \) 1440

\(\displaystyle \frac {f^4 \left (\frac {(d+e x) \left (2 a+b (d+e x)^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b (d+e x)^2+c (d+e x)^4\right )}-\frac {\int \frac {2 a-b (d+e x)^2}{c (d+e x)^4+b (d+e x)^2+a}d(d+e x)}{2 \left (b^2-4 a c\right )}\right )}{e}\)

\(\Big \downarrow \) 1480

\(\displaystyle \frac {f^4 \left (\frac {(d+e x) \left (2 a+b (d+e x)^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b (d+e x)^2+c (d+e x)^4\right )}-\frac {-\frac {1}{2} \left (b-\frac {4 a c+b^2}{\sqrt {b^2-4 a c}}\right ) \int \frac {1}{c (d+e x)^2+\frac {1}{2} \left (b-\sqrt {b^2-4 a c}\right )}d(d+e x)-\frac {1}{2} \left (\frac {4 a c+b^2}{\sqrt {b^2-4 a c}}+b\right ) \int \frac {1}{c (d+e x)^2+\frac {1}{2} \left (b+\sqrt {b^2-4 a c}\right )}d(d+e x)}{2 \left (b^2-4 a c\right )}\right )}{e}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {f^4 \left (\frac {(d+e x) \left (2 a+b (d+e x)^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b (d+e x)^2+c (d+e x)^4\right )}-\frac {-\frac {\left (b-\frac {4 a c+b^2}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} (d+e x)}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} \sqrt {c} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {\left (\frac {4 a c+b^2}{\sqrt {b^2-4 a c}}+b\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} (d+e x)}{\sqrt {\sqrt {b^2-4 a c}+b}}\right )}{\sqrt {2} \sqrt {c} \sqrt {\sqrt {b^2-4 a c}+b}}}{2 \left (b^2-4 a c\right )}\right )}{e}\)

input
Int[(d*f + e*f*x)^4/(a + b*(d + e*x)^2 + c*(d + e*x)^4)^2,x]
 
output
(f^4*(((d + e*x)*(2*a + b*(d + e*x)^2))/(2*(b^2 - 4*a*c)*(a + b*(d + e*x)^ 
2 + c*(d + e*x)^4)) - (-(((b - (b^2 + 4*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sq 
rt[2]*Sqrt[c]*(d + e*x))/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*Sqrt[c]*Sq 
rt[b - Sqrt[b^2 - 4*a*c]])) - ((b + (b^2 + 4*a*c)/Sqrt[b^2 - 4*a*c])*ArcTa 
n[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*Sqrt[ 
c]*Sqrt[b + Sqrt[b^2 - 4*a*c]]))/(2*(b^2 - 4*a*c))))/e
 

3.7.46.3.1 Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 1440
Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] 
:> Simp[(-d^3)*(d*x)^(m - 3)*(2*a + b*x^2)*((a + b*x^2 + c*x^4)^(p + 1)/(2* 
(p + 1)*(b^2 - 4*a*c))), x] + Simp[d^4/(2*(p + 1)*(b^2 - 4*a*c))   Int[(d*x 
)^(m - 4)*(2*a*(m - 3) + b*(m + 4*p + 3)*x^2)*(a + b*x^2 + c*x^4)^(p + 1), 
x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && Gt 
Q[m, 3] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])
 

rule 1462
Int[(u_)^(m_.)*((a_.) + (b_.)*(v_)^2 + (c_.)*(v_)^4)^(p_.), x_Symbol] :> Si 
mp[u^m/(Coefficient[v, x, 1]*v^m)   Subst[Int[x^m*(a + b*x^2 + c*x^(2*2))^p 
, x], x, v], x] /; FreeQ[{a, b, c, m, p}, x] && LinearPairQ[u, v, x]
 

rule 1480
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q))   Int[1/( 
b/2 - q/2 + c*x^2), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q))   Int[1/(b/2 
+ q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] 
 && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^2 - 4*a*c]
 
3.7.46.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.62 (sec) , antiderivative size = 327, normalized size of antiderivative = 1.17

method result size
default \(f^{4} \left (\frac {-\frac {b \,e^{2} x^{3}}{2 \left (4 a c -b^{2}\right )}-\frac {3 b d e \,x^{2}}{2 \left (4 a c -b^{2}\right )}-\frac {\left (3 b \,d^{2}+2 a \right ) x}{2 \left (4 a c -b^{2}\right )}-\frac {d \left (b \,d^{2}+2 a \right )}{2 e \left (4 a c -b^{2}\right )}}{c \,x^{4} e^{4}+4 c d \,e^{3} x^{3}+6 c \,d^{2} e^{2} x^{2}+4 c \,d^{3} e x +b \,e^{2} x^{2}+d^{4} c +2 b d e x +b \,d^{2}+a}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,e^{4} \textit {\_Z}^{4}+4 c d \,e^{3} \textit {\_Z}^{3}+\left (6 c \,d^{2} e^{2}+b \,e^{2}\right ) \textit {\_Z}^{2}+\left (4 d^{3} e c +2 b d e \right ) \textit {\_Z} +d^{4} c +b \,d^{2}+a \right )}{\sum }\frac {\left (-b \,e^{2} \textit {\_R}^{2}-2 b d e \textit {\_R} -b \,d^{2}+2 a \right ) \ln \left (x -\textit {\_R} \right )}{2 e^{3} c \,\textit {\_R}^{3}+6 c d \,e^{2} \textit {\_R}^{2}+6 c \,d^{2} e \textit {\_R} +2 d^{3} c +b e \textit {\_R} +b d}}{4 \left (4 a c -b^{2}\right ) e}\right )\) \(327\)
risch \(\frac {-\frac {b \,e^{2} f^{4} x^{3}}{2 \left (4 a c -b^{2}\right )}-\frac {3 d b e \,f^{4} x^{2}}{2 \left (4 a c -b^{2}\right )}-\frac {f^{4} \left (3 b \,d^{2}+2 a \right ) x}{2 \left (4 a c -b^{2}\right )}-\frac {d \,f^{4} \left (b \,d^{2}+2 a \right )}{2 e \left (4 a c -b^{2}\right )}}{c \,x^{4} e^{4}+4 c d \,e^{3} x^{3}+6 c \,d^{2} e^{2} x^{2}+4 c \,d^{3} e x +b \,e^{2} x^{2}+d^{4} c +2 b d e x +b \,d^{2}+a}+\frac {f^{4} \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,e^{4} \textit {\_Z}^{4}+4 c d \,e^{3} \textit {\_Z}^{3}+\left (6 c \,d^{2} e^{2}+b \,e^{2}\right ) \textit {\_Z}^{2}+\left (4 d^{3} e c +2 b d e \right ) \textit {\_Z} +d^{4} c +b \,d^{2}+a \right )}{\sum }\frac {\left (-\frac {\textit {\_R}^{2} b \,e^{2}}{4 a c -b^{2}}-\frac {2 b d e \textit {\_R}}{4 a c -b^{2}}+\frac {-b \,d^{2}+2 a}{4 a c -b^{2}}\right ) \ln \left (x -\textit {\_R} \right )}{2 e^{3} c \,\textit {\_R}^{3}+6 c d \,e^{2} \textit {\_R}^{2}+6 c \,d^{2} e \textit {\_R} +2 d^{3} c +b e \textit {\_R} +b d}\right )}{4 e}\) \(364\)

input
int((e*f*x+d*f)^4/(a+b*(e*x+d)^2+c*(e*x+d)^4)^2,x,method=_RETURNVERBOSE)
 
output
f^4*((-1/2*b*e^2/(4*a*c-b^2)*x^3-3/2/(4*a*c-b^2)*b*d*e*x^2-1/2*(3*b*d^2+2* 
a)/(4*a*c-b^2)*x-1/2*d/e*(b*d^2+2*a)/(4*a*c-b^2))/(c*e^4*x^4+4*c*d*e^3*x^3 
+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)+1/4/(4*a*c 
-b^2)/e*sum((-_R^2*b*e^2-2*_R*b*d*e-b*d^2+2*a)/(2*_R^3*c*e^3+6*_R^2*c*d*e^ 
2+6*_R*c*d^2*e+2*c*d^3+_R*b*e+b*d)*ln(x-_R),_R=RootOf(c*e^4*_Z^4+4*c*d*e^3 
*_Z^3+(6*c*d^2*e^2+b*e^2)*_Z^2+(4*c*d^3*e+2*b*d*e)*_Z+d^4*c+b*d^2+a)))
 
3.7.46.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2578 vs. \(2 (235) = 470\).

Time = 0.32 (sec) , antiderivative size = 2578, normalized size of antiderivative = 9.24 \[ \int \frac {(d f+e f x)^4}{\left (a+b (d+e x)^2+c (d+e x)^4\right )^2} \, dx=\text {Too large to display} \]

input
integrate((e*f*x+d*f)^4/(a+b*(e*x+d)^2+c*(e*x+d)^4)^2,x, algorithm="fricas 
")
 
output
1/4*(2*b*e^3*f^4*x^3 + 6*b*d*e^2*f^4*x^2 + 2*(3*b*d^2 + 2*a)*e*f^4*x + 2*( 
b*d^3 + 2*a*d)*f^4 + sqrt(1/2)*((b^2*c - 4*a*c^2)*e^5*x^4 + 4*(b^2*c - 4*a 
*c^2)*d*e^4*x^3 + (b^3 - 4*a*b*c + 6*(b^2*c - 4*a*c^2)*d^2)*e^3*x^2 + 2*(2 
*(b^2*c - 4*a*c^2)*d^3 + (b^3 - 4*a*b*c)*d)*e^2*x + ((b^2*c - 4*a*c^2)*d^4 
 + a*b^2 - 4*a^2*c + (b^3 - 4*a*b*c)*d^2)*e)*sqrt(-((b^3 + 12*a*b*c)*f^8 + 
 sqrt(f^16/((b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5)*e^4))*( 
b^6*c - 12*a*b^4*c^2 + 48*a^2*b^2*c^3 - 64*a^3*c^4)*e^2)/((b^6*c - 12*a*b^ 
4*c^2 + 48*a^2*b^2*c^3 - 64*a^3*c^4)*e^2))*log((3*b^2 + 4*a*c)*e*f^12*x + 
(3*b^2 + 4*a*c)*d*f^12 + sqrt(1/2)*((b^4 - 8*a*b^2*c + 16*a^2*c^2)*e*f^8 + 
 2*sqrt(f^16/((b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5)*e^4)) 
*(b^7*c - 12*a*b^5*c^2 + 48*a^2*b^3*c^3 - 64*a^3*b*c^4)*e^3)*sqrt(-((b^3 + 
 12*a*b*c)*f^8 + sqrt(f^16/((b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64* 
a^3*c^5)*e^4))*(b^6*c - 12*a*b^4*c^2 + 48*a^2*b^2*c^3 - 64*a^3*c^4)*e^2)/( 
(b^6*c - 12*a*b^4*c^2 + 48*a^2*b^2*c^3 - 64*a^3*c^4)*e^2))) - sqrt(1/2)*(( 
b^2*c - 4*a*c^2)*e^5*x^4 + 4*(b^2*c - 4*a*c^2)*d*e^4*x^3 + (b^3 - 4*a*b*c 
+ 6*(b^2*c - 4*a*c^2)*d^2)*e^3*x^2 + 2*(2*(b^2*c - 4*a*c^2)*d^3 + (b^3 - 4 
*a*b*c)*d)*e^2*x + ((b^2*c - 4*a*c^2)*d^4 + a*b^2 - 4*a^2*c + (b^3 - 4*a*b 
*c)*d^2)*e)*sqrt(-((b^3 + 12*a*b*c)*f^8 + sqrt(f^16/((b^6*c^2 - 12*a*b^4*c 
^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5)*e^4))*(b^6*c - 12*a*b^4*c^2 + 48*a^2*b^2 
*c^3 - 64*a^3*c^4)*e^2)/((b^6*c - 12*a*b^4*c^2 + 48*a^2*b^2*c^3 - 64*a^...
 
3.7.46.6 Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 641 vs. \(2 (252) = 504\).

Time = 11.98 (sec) , antiderivative size = 641, normalized size of antiderivative = 2.30 \[ \int \frac {(d f+e f x)^4}{\left (a+b (d+e x)^2+c (d+e x)^4\right )^2} \, dx=\frac {- 2 a d f^{4} - b d^{3} f^{4} - 3 b d e^{2} f^{4} x^{2} - b e^{3} f^{4} x^{3} + x \left (- 2 a e f^{4} - 3 b d^{2} e f^{4}\right )}{8 a^{2} c e - 2 a b^{2} e + 8 a b c d^{2} e + 8 a c^{2} d^{4} e - 2 b^{3} d^{2} e - 2 b^{2} c d^{4} e + x^{4} \cdot \left (8 a c^{2} e^{5} - 2 b^{2} c e^{5}\right ) + x^{3} \cdot \left (32 a c^{2} d e^{4} - 8 b^{2} c d e^{4}\right ) + x^{2} \cdot \left (8 a b c e^{3} + 48 a c^{2} d^{2} e^{3} - 2 b^{3} e^{3} - 12 b^{2} c d^{2} e^{3}\right ) + x \left (16 a b c d e^{2} + 32 a c^{2} d^{3} e^{2} - 4 b^{3} d e^{2} - 8 b^{2} c d^{3} e^{2}\right )} + \operatorname {RootSum} {\left (t^{4} \cdot \left (1048576 a^{6} c^{7} e^{4} - 1572864 a^{5} b^{2} c^{6} e^{4} + 983040 a^{4} b^{4} c^{5} e^{4} - 327680 a^{3} b^{6} c^{4} e^{4} + 61440 a^{2} b^{8} c^{3} e^{4} - 6144 a b^{10} c^{2} e^{4} + 256 b^{12} c e^{4}\right ) + t^{2} \left (- 12288 a^{4} b c^{4} e^{2} f^{8} + 8192 a^{3} b^{3} c^{3} e^{2} f^{8} - 1536 a^{2} b^{5} c^{2} e^{2} f^{8} + 16 b^{9} e^{2} f^{8}\right ) + 16 a^{3} c^{2} f^{16} + 24 a^{2} b^{2} c f^{16} + 9 a b^{4} f^{16}, \left ( t \mapsto t \log {\left (x + \frac {16384 t^{3} a^{3} b c^{4} e^{3} - 12288 t^{3} a^{2} b^{3} c^{3} e^{3} + 3072 t^{3} a b^{5} c^{2} e^{3} - 256 t^{3} b^{7} c e^{3} + 64 t a^{2} c^{2} e f^{8} - 128 t a b^{2} c e f^{8} - 4 t b^{4} e f^{8} + 4 a c d f^{12} + 3 b^{2} d f^{12}}{4 a c e f^{12} + 3 b^{2} e f^{12}} \right )} \right )\right )} \]

input
integrate((e*f*x+d*f)**4/(a+b*(e*x+d)**2+c*(e*x+d)**4)**2,x)
 
output
(-2*a*d*f**4 - b*d**3*f**4 - 3*b*d*e**2*f**4*x**2 - b*e**3*f**4*x**3 + x*( 
-2*a*e*f**4 - 3*b*d**2*e*f**4))/(8*a**2*c*e - 2*a*b**2*e + 8*a*b*c*d**2*e 
+ 8*a*c**2*d**4*e - 2*b**3*d**2*e - 2*b**2*c*d**4*e + x**4*(8*a*c**2*e**5 
- 2*b**2*c*e**5) + x**3*(32*a*c**2*d*e**4 - 8*b**2*c*d*e**4) + x**2*(8*a*b 
*c*e**3 + 48*a*c**2*d**2*e**3 - 2*b**3*e**3 - 12*b**2*c*d**2*e**3) + x*(16 
*a*b*c*d*e**2 + 32*a*c**2*d**3*e**2 - 4*b**3*d*e**2 - 8*b**2*c*d**3*e**2)) 
 + RootSum(_t**4*(1048576*a**6*c**7*e**4 - 1572864*a**5*b**2*c**6*e**4 + 9 
83040*a**4*b**4*c**5*e**4 - 327680*a**3*b**6*c**4*e**4 + 61440*a**2*b**8*c 
**3*e**4 - 6144*a*b**10*c**2*e**4 + 256*b**12*c*e**4) + _t**2*(-12288*a**4 
*b*c**4*e**2*f**8 + 8192*a**3*b**3*c**3*e**2*f**8 - 1536*a**2*b**5*c**2*e* 
*2*f**8 + 16*b**9*e**2*f**8) + 16*a**3*c**2*f**16 + 24*a**2*b**2*c*f**16 + 
 9*a*b**4*f**16, Lambda(_t, _t*log(x + (16384*_t**3*a**3*b*c**4*e**3 - 122 
88*_t**3*a**2*b**3*c**3*e**3 + 3072*_t**3*a*b**5*c**2*e**3 - 256*_t**3*b** 
7*c*e**3 + 64*_t*a**2*c**2*e*f**8 - 128*_t*a*b**2*c*e*f**8 - 4*_t*b**4*e*f 
**8 + 4*a*c*d*f**12 + 3*b**2*d*f**12)/(4*a*c*e*f**12 + 3*b**2*e*f**12))))
 
3.7.46.7 Maxima [F]

\[ \int \frac {(d f+e f x)^4}{\left (a+b (d+e x)^2+c (d+e x)^4\right )^2} \, dx=\int { \frac {{\left (e f x + d f\right )}^{4}}{{\left ({\left (e x + d\right )}^{4} c + {\left (e x + d\right )}^{2} b + a\right )}^{2}} \,d x } \]

input
integrate((e*f*x+d*f)^4/(a+b*(e*x+d)^2+c*(e*x+d)^4)^2,x, algorithm="maxima 
")
 
output
-1/2*f^4*integrate(-(b*e^2*x^2 + 2*b*d*e*x + b*d^2 - 2*a)/((b^2*c - 4*a*c^ 
2)*e^4*x^4 + 4*(b^2*c - 4*a*c^2)*d*e^3*x^3 + (b^2*c - 4*a*c^2)*d^4 + (b^3 
- 4*a*b*c + 6*(b^2*c - 4*a*c^2)*d^2)*e^2*x^2 + a*b^2 - 4*a^2*c + (b^3 - 4* 
a*b*c)*d^2 + 2*(2*(b^2*c - 4*a*c^2)*d^3 + (b^3 - 4*a*b*c)*d)*e*x), x) + 1/ 
2*(b*e^3*f^4*x^3 + 3*b*d*e^2*f^4*x^2 + (3*b*d^2 + 2*a)*e*f^4*x + (b*d^3 + 
2*a*d)*f^4)/((b^2*c - 4*a*c^2)*e^5*x^4 + 4*(b^2*c - 4*a*c^2)*d*e^4*x^3 + ( 
b^3 - 4*a*b*c + 6*(b^2*c - 4*a*c^2)*d^2)*e^3*x^2 + 2*(2*(b^2*c - 4*a*c^2)* 
d^3 + (b^3 - 4*a*b*c)*d)*e^2*x + ((b^2*c - 4*a*c^2)*d^4 + a*b^2 - 4*a^2*c 
+ (b^3 - 4*a*b*c)*d^2)*e)
 
3.7.46.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1474 vs. \(2 (235) = 470\).

Time = 0.30 (sec) , antiderivative size = 1474, normalized size of antiderivative = 5.28 \[ \int \frac {(d f+e f x)^4}{\left (a+b (d+e x)^2+c (d+e x)^4\right )^2} \, dx=\text {Too large to display} \]

input
integrate((e*f*x+d*f)^4/(a+b*(e*x+d)^2+c*(e*x+d)^4)^2,x, algorithm="giac")
 
output
-1/4*((b*e^2*f^4*(sqrt(1/2)*sqrt(-(b*e^2 + sqrt(b^2 - 4*a*c)*e^2)/(c*e^4)) 
 + d/e)^2 - 2*b*d*e*f^4*(sqrt(1/2)*sqrt(-(b*e^2 + sqrt(b^2 - 4*a*c)*e^2)/( 
c*e^4)) + d/e) + b*d^2*f^4 - 2*a*f^4)*log(x + sqrt(1/2)*sqrt(-(b*e^2 + sqr 
t(b^2 - 4*a*c)*e^2)/(c*e^4)) + d/e)/(2*c*e^4*(sqrt(1/2)*sqrt(-(b*e^2 + sqr 
t(b^2 - 4*a*c)*e^2)/(c*e^4)) + d/e)^3 - 6*c*d*e^3*(sqrt(1/2)*sqrt(-(b*e^2 
+ sqrt(b^2 - 4*a*c)*e^2)/(c*e^4)) + d/e)^2 - 2*c*d^3*e - b*d*e + (6*c*d^2* 
e^2 + b*e^2)*(sqrt(1/2)*sqrt(-(b*e^2 + sqrt(b^2 - 4*a*c)*e^2)/(c*e^4)) + d 
/e)) - (b*e^2*f^4*(sqrt(1/2)*sqrt(-(b*e^2 + sqrt(b^2 - 4*a*c)*e^2)/(c*e^4) 
) - d/e)^2 + 2*b*d*e*f^4*(sqrt(1/2)*sqrt(-(b*e^2 + sqrt(b^2 - 4*a*c)*e^2)/ 
(c*e^4)) - d/e) + b*d^2*f^4 - 2*a*f^4)*log(x - sqrt(1/2)*sqrt(-(b*e^2 + sq 
rt(b^2 - 4*a*c)*e^2)/(c*e^4)) + d/e)/(2*c*e^4*(sqrt(1/2)*sqrt(-(b*e^2 + sq 
rt(b^2 - 4*a*c)*e^2)/(c*e^4)) - d/e)^3 + 6*c*d*e^3*(sqrt(1/2)*sqrt(-(b*e^2 
 + sqrt(b^2 - 4*a*c)*e^2)/(c*e^4)) - d/e)^2 + 2*c*d^3*e + b*d*e + (6*c*d^2 
*e^2 + b*e^2)*(sqrt(1/2)*sqrt(-(b*e^2 + sqrt(b^2 - 4*a*c)*e^2)/(c*e^4)) - 
d/e)) + (b*e^2*f^4*(sqrt(1/2)*sqrt(-(b*e^2 - sqrt(b^2 - 4*a*c)*e^2)/(c*e^4 
)) + d/e)^2 - 2*b*d*e*f^4*(sqrt(1/2)*sqrt(-(b*e^2 - sqrt(b^2 - 4*a*c)*e^2) 
/(c*e^4)) + d/e) + b*d^2*f^4 - 2*a*f^4)*log(x + sqrt(1/2)*sqrt(-(b*e^2 - s 
qrt(b^2 - 4*a*c)*e^2)/(c*e^4)) + d/e)/(2*c*e^4*(sqrt(1/2)*sqrt(-(b*e^2 - s 
qrt(b^2 - 4*a*c)*e^2)/(c*e^4)) + d/e)^3 - 6*c*d*e^3*(sqrt(1/2)*sqrt(-(b*e^ 
2 - sqrt(b^2 - 4*a*c)*e^2)/(c*e^4)) + d/e)^2 - 2*c*d^3*e - b*d*e + (6*c...
 
3.7.46.9 Mupad [B] (verification not implemented)

Time = 10.24 (sec) , antiderivative size = 8025, normalized size of antiderivative = 28.76 \[ \int \frac {(d f+e f x)^4}{\left (a+b (d+e x)^2+c (d+e x)^4\right )^2} \, dx=\text {Too large to display} \]

input
int((d*f + e*f*x)^4/(a + b*(d + e*x)^2 + c*(d + e*x)^4)^2,x)
 
output
atan(((((2048*a^4*c^5*e^12*f^4 + 384*a^2*b^4*c^3*e^12*f^4 - 1536*a^3*b^2*c 
^4*e^12*f^4 - 32*a*b^6*c^2*e^12*f^4)/(8*(b^6 - 64*a^3*c^3 + 48*a^2*b^2*c^2 
 - 12*a*b^4*c)) + ((64*b^9*c^2*d*e^13 - 1024*a*b^7*c^3*d*e^13 + 16384*a^4* 
b*c^6*d*e^13 + 6144*a^2*b^5*c^4*d*e^13 - 16384*a^3*b^3*c^5*d*e^13)/(8*(b^6 
 - 64*a^3*c^3 + 48*a^2*b^2*c^2 - 12*a*b^4*c)) + (x*(16*b^7*c^2*e^14 - 192* 
a*b^5*c^3*e^14 - 1024*a^3*b*c^5*e^14 + 768*a^2*b^3*c^4*e^14))/(2*(b^4 + 16 
*a^2*c^2 - 8*a*b^2*c)))*(-(b^9*f^8 + f^8*(-(4*a*c - b^2)^9)^(1/2) - 768*a^ 
4*b*c^4*f^8 - 96*a^2*b^5*c^2*f^8 + 512*a^3*b^3*c^3*f^8)/(32*(b^12*c*e^2 + 
4096*a^6*c^7*e^2 - 24*a*b^10*c^2*e^2 + 240*a^2*b^8*c^3*e^2 - 1280*a^3*b^6* 
c^4*e^2 + 3840*a^4*b^4*c^5*e^2 - 6144*a^5*b^2*c^6*e^2)))^(1/2))*(-(b^9*f^8 
 + f^8*(-(4*a*c - b^2)^9)^(1/2) - 768*a^4*b*c^4*f^8 - 96*a^2*b^5*c^2*f^8 + 
 512*a^3*b^3*c^3*f^8)/(32*(b^12*c*e^2 + 4096*a^6*c^7*e^2 - 24*a*b^10*c^2*e 
^2 + 240*a^2*b^8*c^3*e^2 - 1280*a^3*b^6*c^4*e^2 + 3840*a^4*b^4*c^5*e^2 - 6 
144*a^5*b^2*c^6*e^2)))^(1/2) - (128*a^3*c^4*d*e^11*f^8 - 4*b^6*c*d*e^11*f^ 
8 + 8*a*b^4*c^2*d*e^11*f^8)/(8*(b^6 - 64*a^3*c^3 + 48*a^2*b^2*c^2 - 12*a*b 
^4*c)) + (x*(b^4*c*e^12*f^8 + 8*a^2*c^3*e^12*f^8 + 2*a*b^2*c^2*e^12*f^8))/ 
(2*(b^4 + 16*a^2*c^2 - 8*a*b^2*c)))*(-(b^9*f^8 + f^8*(-(4*a*c - b^2)^9)^(1 
/2) - 768*a^4*b*c^4*f^8 - 96*a^2*b^5*c^2*f^8 + 512*a^3*b^3*c^3*f^8)/(32*(b 
^12*c*e^2 + 4096*a^6*c^7*e^2 - 24*a*b^10*c^2*e^2 + 240*a^2*b^8*c^3*e^2 - 1 
280*a^3*b^6*c^4*e^2 + 3840*a^4*b^4*c^5*e^2 - 6144*a^5*b^2*c^6*e^2)))^(1...